Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Language
Document Type
Year range
1.
Colloids Surf B Biointerfaces ; 222: 113111, 2023 Feb.
Article in English | MEDLINE | ID: covidwho-2290480

ABSTRACT

Throughout decades, the intrinsic power of the immune system to fight pathogens has inspired researchers to develop techniques that enable the prevention or treatment of infections via boosting the immune response against the target pathogens, which has led to the evolution of vaccines. The recruitment of Lipid nanoparticles (LNPs) as either vaccine delivery platforms or immunogenic modalities has witnessed a breakthrough recently, which has been crowned with the development of effective LNPs-based vaccines against COVID-19. In the current article, we discuss some principles of such a technology, with a special focus on the technical aspects from a translational perspective. Representative examples of LNPs-based vaccines against cancer, COVID-19, as well as other infectious diseases, autoimmune diseases, and allergies are highlighted, considering the challenges and promises. Lastly, the key features that can improve the clinical translation of this area of endeavor are inspired.


Subject(s)
COVID-19 , Nanoparticles , Vaccines , Humans , COVID-19 Vaccines , COVID-19/prevention & control , Technology
2.
Adv Drug Deliv Rev ; 181: 114083, 2022 02.
Article in English | MEDLINE | ID: covidwho-1588554

ABSTRACT

Despite the massive interest and recent developments in the field of nanomedicine, only a limited number of formulations have found their way to the clinics. This shortcoming reveals the challenges facing the clinical translation of this technology. In the current article, we summarize and evaluate the status, market situation, and clinical profiles of the reported nanomedicines, the shortcomings limiting their clinical translation, as well as some approaches designed to break through this barrier. Moreover, some emerging technologies that have the potential to compete with nanomedicines are highlighted. Lastly, we identify the key factors that should be considered in nanomedicine-related research to be clinically-translatable. These can be classified into five areas: rational design during the research and development stage, the recruitment of representative preclinical models, careful design of clinical trials, development of specific and uniform regulatory protocols, and calls for non-classic sponsorship. This new field of endeavor was firmly established during the last two decades and more in-depth progress is expected in the coming years.


Subject(s)
Nanomedicine/methods , Animals , Drug Compounding/methods , Humans , Nanoparticles/chemistry
3.
J Drug Deliv Sci Technol ; 63: 102435, 2021 Jun.
Article in English | MEDLINE | ID: covidwho-1091782

ABSTRACT

The current world health threat posed by the novel coronavirus disease of 2019 (COVID-19) calls for the urgent development of effective therapeutic options. COVID-19 needs daunting routes such as nano-antivirals. Hence, the role of nanotechnology is very critical in combating this nano-enemy "virus." Although substantial resources are under ongoing attention for prevention and care, we would like to start sharing with readers our vision of the role of inhaled nanomaterials and targeting systems that can play an important role in the fight against the COVID-19. In this review, we underline the genomic structure of COVID-19, recent modes of virus transmission with measures to control the infection, pathogenesis, clinical presentation of SARS-CoV-2, and how much the virus affects the lung. Additionally, the recent therapeutic approaches for managing COVID-19 with emphasis on the value of nanomaterial-based technical approaches are discussed in this review. This review also focuses on the safe and efficient delivery of useable targeted therapies using designed nanocarriers. Moreover, the effectiveness and availability of active targeting of certain specific receptors expressed on the coronavirus surfaces via tailored ligand nanoparticles are manipulated. It was also highlighted in this review the role of inhaled medicines including antivirals and repurposed drugs for fighting the associated lung disorders and efficiency of developed vaccines. Moreover, the inhalation delivery safety techniques were also highlighted.

SELECTION OF CITATIONS
SEARCH DETAIL